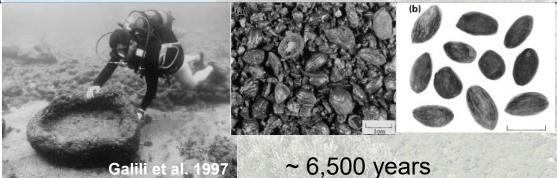
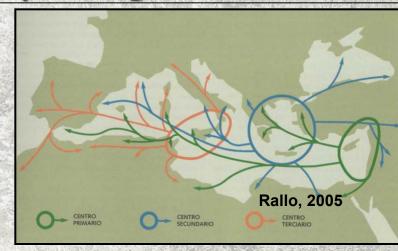


Irrigation of olive with reclaimed wastewater

Arnon Dag, Gilat Research Center
Agricultural Research Organization
Volcani Institute
Ministry of Agriculture, Israel




Development in world olive oil production

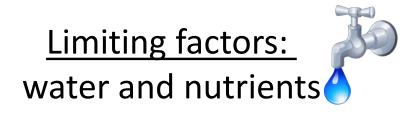
International Olive Council / FAO STAT

Domestication of olive started in the Middle East ca. 6500 years ago

scientific reports

Early production of table olives at a mid-7th millennium BP submerged site off the Carmel coast (Israel)

E. Galili^{1,2,3,23}, D. Langgut⁴, J. F. Terral^{5,6}, O. Barazani⁷, A. Dag⁸, L. Kolska Horwitz⁹, I. Ogloblin Ramirez², B. Rosen¹⁰, M. Weinstein-Evron¹¹, S. Chaim¹¹, E. Kremer⁴, S. Lev-Yadun¹², E. Boaretto¹³, Z. Ben-Barak-Zelas¹⁴ & A. Fishman¹⁴



Check for updates

Wild type
O. europea oleaster

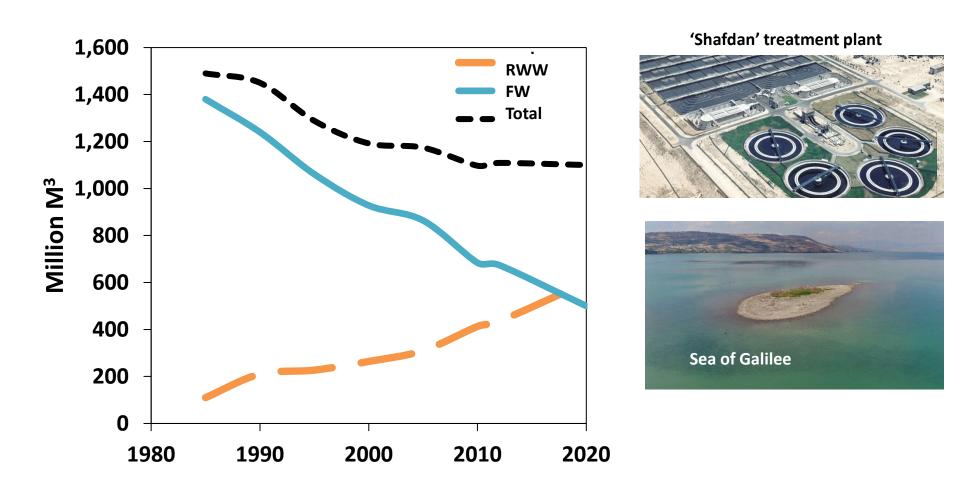
Barazani, O., Westberg, E., Hanin, N., Dag, A., Kerem, Z., Tugendhaft, Y., Hamidt, M., Hijawi, T. and Kadereit, J.W, (2014) A comparative analysis of genetic variation in rootstocks and scions of old olive trees- a window into the history of olive cultivation practices and past genetic variation. BMC Plant Biol. 14: 146.

Close spaced planting

Traditional orchards

Intensive orchards

Intensification of olive cultivation


- Varieties (fast growing high yielding)
- > Close spaced planting, orchard management
- > Pruning, soil cultivation, plant protection
- > Irrigation fertigation

Water available for irrigating olives

- Scarce ⇒ optimize irrigation
- Low quality
 - Recycled wastewater
 - Saline water

Sources of water for irrigation in Israel

Reclaimed wastewater

Treated wastewater

Recycled water

Effluent

Microorganisms **Effluent** Nutrients Pathogens Biodegradable **Trace** organic matter H_2O elements Suspended NaCI solids Toxic ic ds organic nds compounds Hormones Dereroes dens

Microorganisms
Pathogens

Biodegradable organic matter

 H_2O

Trace elements

Nutrients

Suspended solids

Toxic ic ds organium ds organium compounds

De Drinones De teres ses sents

MERC project Utilization wastewater for office in

Jordan:

- Rainfed
- Recycled water
- Fresh water

Palestinian Authority:

- Rainfed
- Recycled water

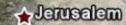
> Ramtha

Nealme

Jarash

Sir

Israel:


- Fresh water
 - Recycled water standard fertigation
 - Recycled water reduced fertigation

★Amman

Naour

Kedama :

Data SIO, NOAA, U.S. Navy, NGA, GEBGO Image @ 2009 Digital Globe Map Data @ 2009 AND @ 2009 ORION-ME

Gaza

Rish

24 "10.26'32°15" מז' 15.26'32°15" מ

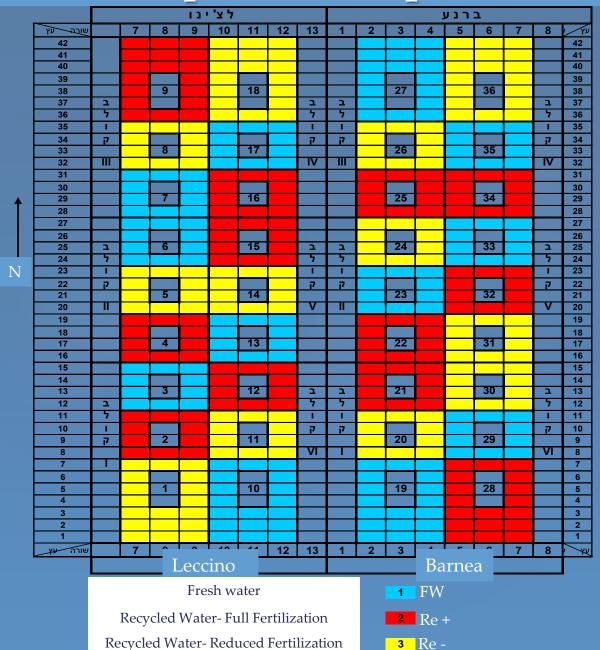
Objectives

- To investigate the long term effects of irrigation with RWW on soil properties.
- To investigate the impact of fertilization practice and water source on olive tree performance.
- To investigate the impact of fertilization practice and water source on olive oil quality.

Experimental orchard

- 20 hectare, super high-density
- Trees were four years old
- Eight consecutive years
- Soil: 22-24% sand, silt 22-25, 50-55% clay
- Mediterranean climate
- Two water sources: fresh water and effluent

Cultivars


- -Barnea
- -Leccino

Replicates

6 X 2 measured trees per each cultivar per each treatment

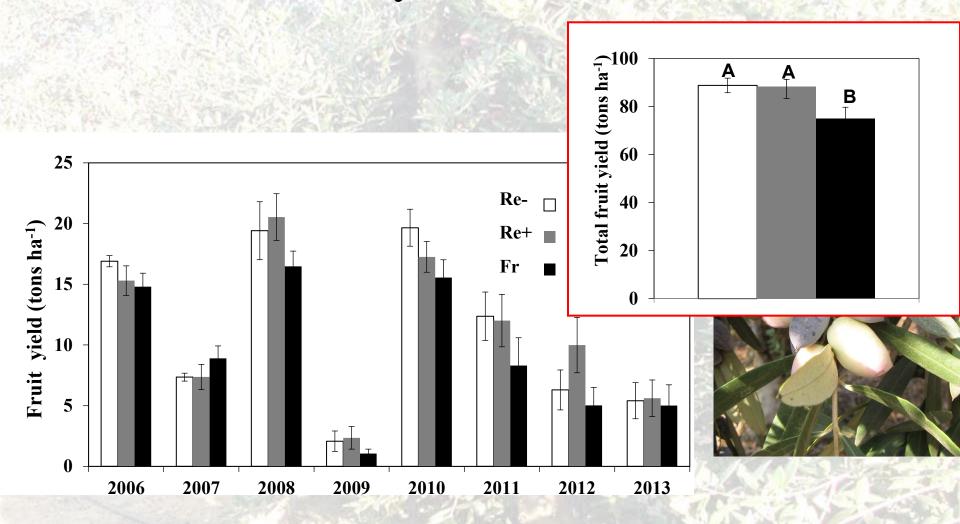
Schematic map of the experimental plot

"The trip of a drip"

Experimental set up

Year	Fresh water	Effluent+ (Re+)	Effluent – (Re-)
2006-2009	Standard fertilization	Standard fertilization	Reduced fertilization
2010-2013	Standard fertilization	Reduced fertilization	No fertilization

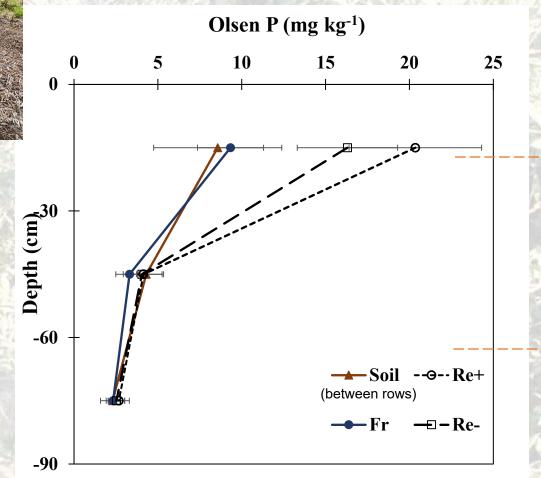
Standard fertilization; 180 kg/h N, 290 kg/ha K


Average NPK received annually with the irrigation water (kg/ha)

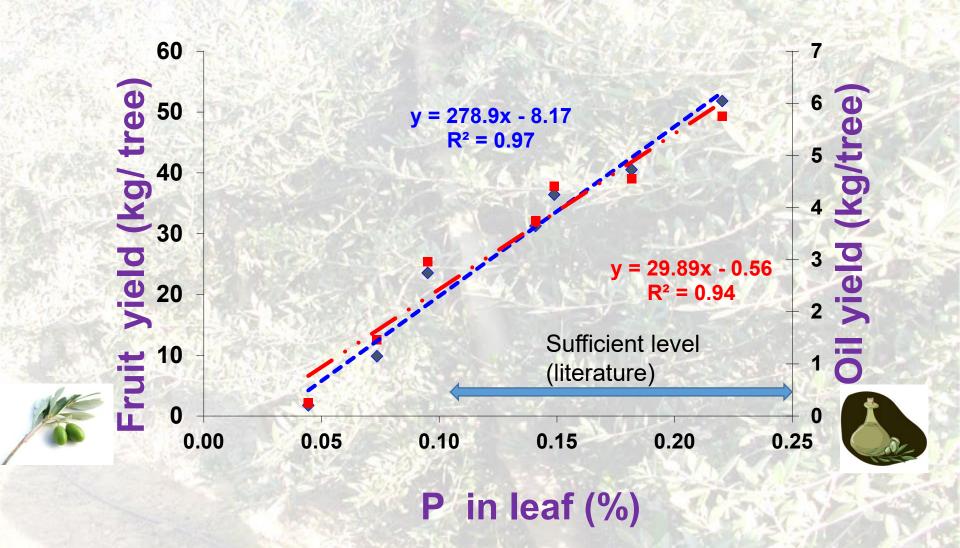
기계 경영 시간 등 이 가 있는 내용하게 되었다.		
Year	Fresh water	Effluent
2006-2009	N = 9, $P = 0$, $K = 16$	N = 94, P = 26, K = 146
2010-2013	N = 12, P = 0, K = 22	N = 124, P = 34, K = 193

Water characteristics (n=40)

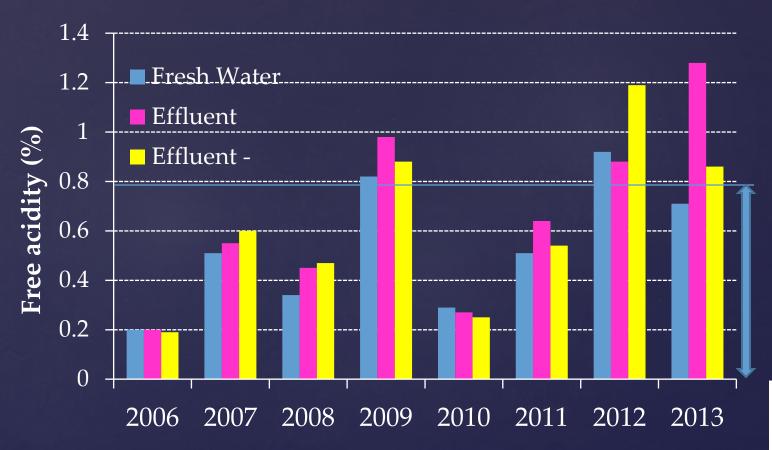
Constituent	Units	Effluent	Fresh water
рН		7.7 (0.3)	7.5 (0.2)
EC	dS/m	1.71 (0.22)	0.8 (0.2)
Cl	mg/L	326 (38)	138 (56)
Na	mg/L	202 (27)	69 (28)
Total N	mg/L	20.3(6.7)	2.5 (2.2)
K	mg/L	31.2 (6.8)	3.5 (2.8)
P	mg/L	5.6 (2.8)	0.0 (0.0)
Ca	mg/L	66.9 (8.8)	48.0 (12.9)
Mg	mg/L	35.6 (6.5)	22.1 (11.8)
SAR		5.1 (0.9)	2.1 (0.6)


Fruit yield- 'Barnea'

Erel et al., (2019). Agric. Water Manag. 213: 324-335.

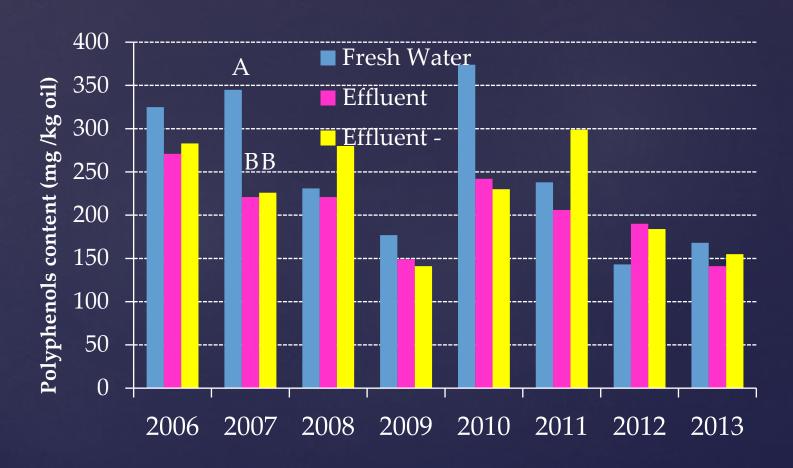


Phosphorus in soil


Erel et al., (2019). Agric. Water Manag. 213: 324-335.

The correlation between phosphorous level in diagnostic leaves and fruit and oil yield

Erel et al. (2013) Scientia Hort. 159: 8-18.


Oil quality-FFA content, 'Barnea'

No significant difference (P<0.05) was found between irrigation treatment in any of the seasons

Oil quality- polyphenol content, 'Barnea'

Different letters indicates on significant difference (P<0.05) between irrigation treatment in any of the same season

Sensorial evaluation

Attribute	Fresh water	Effluent+	Effluent -
· ·	Barnea' (average of 7	seasons)	
Fruitiness	3.8	4.0	3.5
Bitterness	2.8	2.0	2.0
Pungency	4.0	3.6	3.3
' 1	Leccino' (average of 4	seasons)	
Fruitiness	3.1	3.2	3.4
Bitterness	0.2	0.6	0.2
Pungency	0.6	1.8	1.3

No sensory defects were detected in any of the oil samples.

Health risks

- Bacteriological
- Heavy metal contamination
- Residues of pharmaceuticals and hormones

Bacteriological tests- Water and Oil

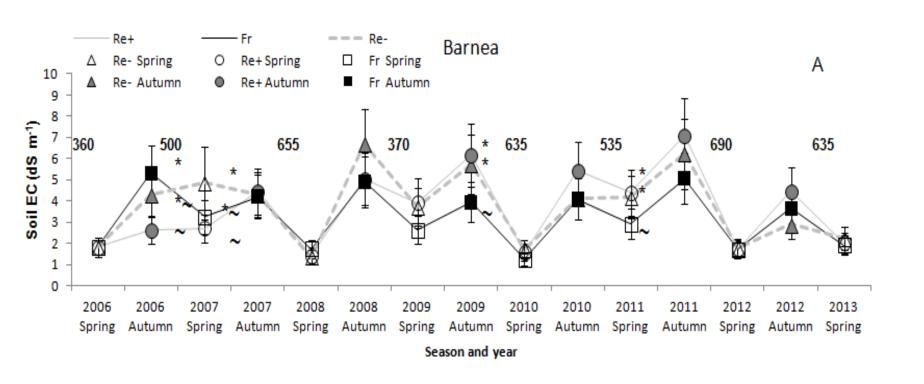
Water	fresh water	effluent
Coliform bacteria (per 100 ml water)	<1	17,000
Salmonella bacteria (per 100 ml water)	Negative	Negative

Oil	Irrigate	d with
	fresh water	effluent
Total bacteria count (per 1 gr. oil)	80	40
Coliform bacteria (per 1 gr. oil)	< 3	< 3
Salmonella bacteria (per 20 gr. oil)	Negative	Negative

Residues of pharmaceuticals and hormones

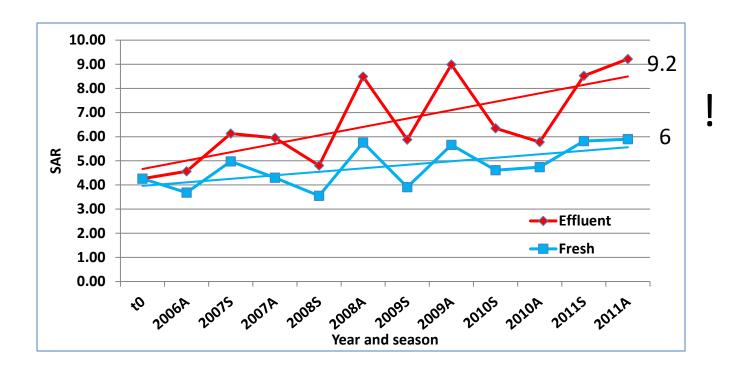
<u>Using mass spectroscopy we measure (detection level):</u>

- Carbamazepine (0.08 ppm)
- Sulfadimethoxine (0.01 ppm)
- Ciprofloxacine (0.08 ppm)
- Tetracycline (0.1 ppm)
- Estrone (0.1 ppm)
- 17b Estradiol (0.01 ppm)

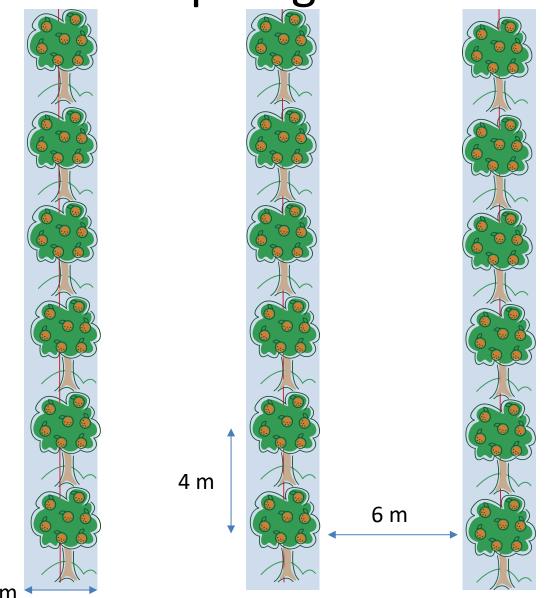


None of these compounds or their metabolites were detected in oils from trees irrigated with effluent.

Residues of heavy metals


Cd was the only heavy metal found in oil, in very low concentration (< 0.05 mg /kg oil) while oil obtained from trees irrigated with effluent having lower levels than trees irrigated with fresh water.

Soil Ec


Erel et al. (2019). Agric. Water Manag. 213: 324-335.

Soil SAR

- SAR values of the soil extract increase steadily with time.
- SAR increase is faster in the plots irrigated with recycled water.

Irrigated soil in orchard irrigated with drip irrigation

Amount of Water Capacity

 $3.0m \times 1.0m \times 0.8m = 2.4m^3$

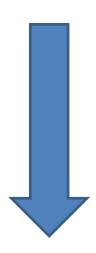
lieC te sayl Heavy Soil Medium Soil Light Soil

% of Water Field Capacity

30%=720 liter

20%=480 liter

10%=240 liter


Amount of Water Capacity in 50% Field

360 liter

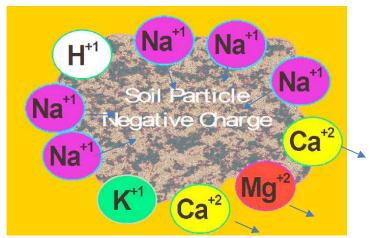
240 liter

120 liter

Large volume of low quality irrigation water applied to a limited soil volume

Enhance changes in soil chemical and physical properties

Conclusions


- Recycled water did not reduce fruit and oil yield.
- Recycled water did not affect olive oil quality parameters.
- Recycled water irrigation did not cause bacterial, heavy metal, pharmaceutical, or hormone contamination of oil
- Nutrients arriving with recycled water need to be taken into account while considering fertilizers to be given:
 - Reduce fertilizer cost
 - Improve oil quality
 - Reduce environmental contamination risks
- A constant increase in SAR values suggest possible soil degradation following RWW use.

Experimental orchard

An olive orchard in Timorim following long term irrigation with saline-sodic water

EC = 2.5 dS/m SAR = 14.6-> Soil SAR ~ 30

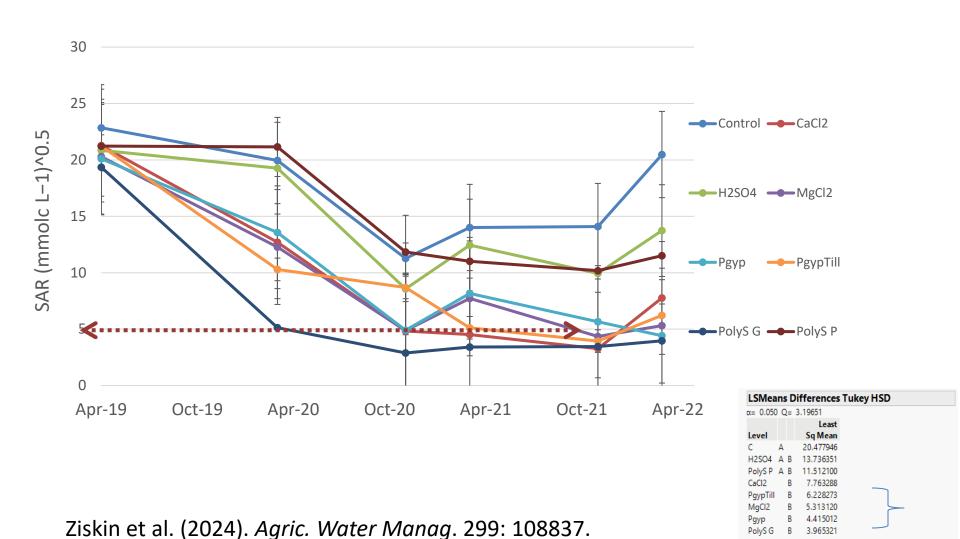
Treatments studied

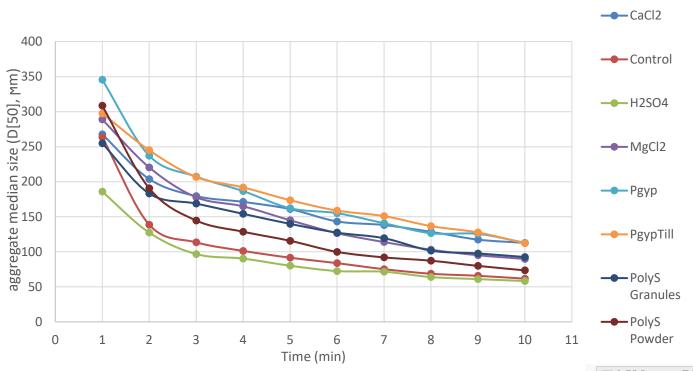
Prior to the rainy season

Polysulphate granular K₂Ca₂Mg(SO₄)₄

Polysulphate powder K2Ca2Mg(SO4)4

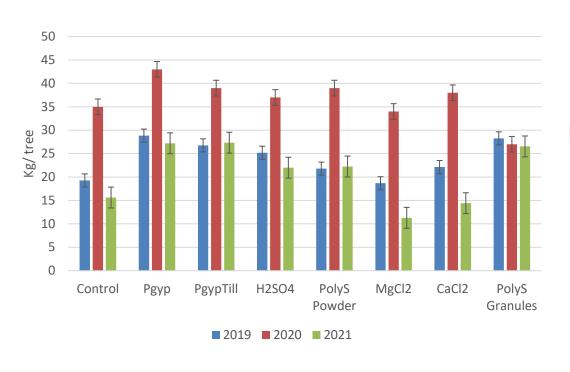
Gypsum


During the irrigation season
CaCl ₂
MgCl ₂
H ₂ SO ₄


$$SAR = \frac{[Na]}{([Ca + Mg]/2)^{0.5}}$$

Soil SAR at 0-30 cm depth

Levels not connected by same letter are significantly different.


Aggregate stability – soil sampling of 11/2021

LSMeans	Di	ff	er	en	ice	s Student'	s t	
x= 0.050 t= 1.9	965	94	ļ					
						Least		
Level						Sq Mean		
PgypTill	Α					180.12167		
Pgyp	Α					179.99167		
CaCl2		В				162.36000		
MgCl2		В	C			152.57000		
PolyS Granules			C	D		143.96667		
PolyS Powder				D		132.09833		
Control					Е	106.41233		
H2SO4					E	90.80667		
evels not conn	ecte	ed	by	/ Sa	ame	letter are sig	nificantly	differen

Fruit Yield, 2019-2021

20	2019				
Mean	Level				
28.850000 A	Pgyp				
28.266667 A	PolyS Granules				
26.775000 A	PgypTill				
25.191667 A	H2SO4				
22.125000 A	CaCl2				
21.800000 A	PolyS Powder				
19.283333 A	Control				
18.691667 A	MgCl2				
20	20				
Mean	Level				
43.250000 A	Pgyp				
39.291667 A	PgypTill				
38.666667 A	PolyS Powder				
37.625000 A	CaCl2				
37.250000 A	H2SO4				
34.875000 A	Control				
34.375000 A	9 -				
26.833333 A	PolyS Granules				
20)21				
Mean	Level				
27.333333 A	A PgypTill 🧹				
27.208333 A	371				
26.541667 B A	,				
22.250000 B A					
22.000000 B A					
15.625000 B A					
14.416667 B A					
11.291667 B	MgCl2				

Sustainable agriculture-

PG – from waste to resource

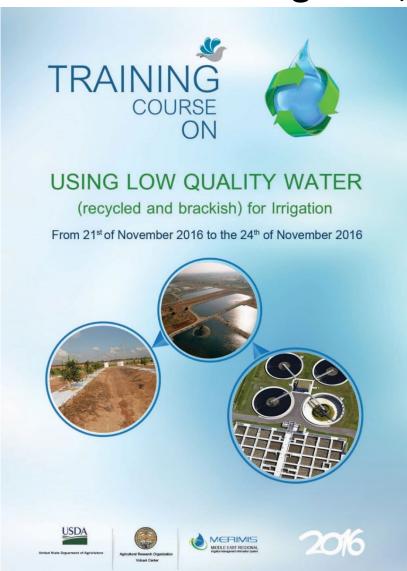
SAFTY EXP

Objective: The ensure the safety of using FG for soil application

The results indicate that there
is no significant increase in
radioactive and chemical
contaminants in soil and plant
following PG application.

Collaborators;

Ran Erel, Alon Ben-Gal, Issac Zipori, Guy Levy Rona Ziskin and Uri Yermiyahu Gilat Research Center, Volcani Institute Ministry of Agriculture, Israel


Zohar Kerem, Loai Basheer Faculty of Agriculture, The Hebrew University of Jerusalem, Israel

Thank you: Funding; USAID (MERC program) USDA ARS OIRP (MERIMIS program) Chief Scientist, Ministry of Agriculture, Israel CFPN (ICL)

Publications;

- -Segal, E., Dag, A., Ben-Gal, A., Zipori, I., Suryano, S. and Yermiyahu, U. (2011). Olive irrigation with reclaimed wastewater: agronomic and environmental considerations. *Agric. Ecosyst. Environ*. 140: 454-461.
- -Frank, S., Dag, A., Yermiyahu, U., Zipori, I., Hadar, Y. and Minz, D. (2015). Seasonal effect and anthropogenic impact on the composition of the active bacterial community in Mediterranean orchard soil. *FEMS Microbiol. Ecol.* 91: fiv096.
- -Erel, R., Eppel, A., Yermiyahu, U., Ben-Gal, A., Levy, G., Zipori, I., Schaumann, G.E., Mayer, O. and Dag, A. (2019). Long-term irrigation with reclaimed wastewater: Implications on nutrients management, soil chemistry and olive (*Olea europaea* L.) performance. *Agric. Water Manage*. 213: 324-335.
- -Basher, L., Dag, A., Yermiyahu, U., Ben-Gal, A., Zipori, I. and Kerem, Z. (2019). Effect of reclaimed wastewater irrigation and fertigation level on olive oil composition and quality. *J. Sci. Food. Agric*. 99: 6342-6349.
- -Ziskin, R., Dag, A., Yermiyahu, U., & Levy, G. J. (2024). Different amendments for combating soil sodicity in an olive orchard. *Agric. Water Manage*, 299, 108837.

Training course on Using low quality water for irrigation, Tel Aviv, 2016

