

SUSTAINABLE PEST AND DISEASE MANAGEMENT UPDATE

INCLUDING THE OLIVE STRATEGIC AGRICHEMICALS REVIEW AND THE OLIVE BIOSECURITY PROJECT

Robert Spooner-Hart

THE AUSTRALIAN OLIVE INDUSTRY HAS ENDORSED AND ADOPTED INTEGRATED PEST AND DISEASE MANAGEMENT (IPDM)

- Limited, strategic use of selected pesticides can be part of successfully implementing IPDM programs, complementing other strategies
- In most IPM programs, pesticides are normally used only after monitoring indicates they are needed, based on established guidelines such as thresholds

The Strategic Agrichemical Review Process (SARP)

- aims to assess CURRENT pest priorities
- evaluate available agrichemicals in terms of IPM-compatibility, safety, pest resistance, politics (international restrictions/MRLs etc)
- identify gaps in pest control strategies
- recommend alternatives for the olive industry

Conducted 2024-25, Released March 2025

Funded by Hort Innovation using the olive research and development levy and funds from the Australian Government.

Olive

Strategic Agrichemical Review Process (SARP)

March 2025

Hort Innovation Project – MT23001

SARP SUMMARY OF KEY OLIVE PESTS							
PESTS	STATUS	NAME					
INSECTS	HIGH PRIORITY	Olive lace bug Froggattia olivinia					
	MODERATE PRIORITY	Black scale Saissetia oleae					
		Apple weevil, Curculio beetle Otiorhynchus cribricollis					
DISEASES	HIGH PRIORITY	Anthracnose Colletotrichum spp.					
		Olive peacock spot Spilocaea oleagina					

Cercospora leaf mould, Grey mould Pseudocercospora cladosporioides

Flaxleaf fleabane

Barnyard Grass Echinochloa spp.

Crowsfoot Grass

Eleusine indica

Conyza bonariensis

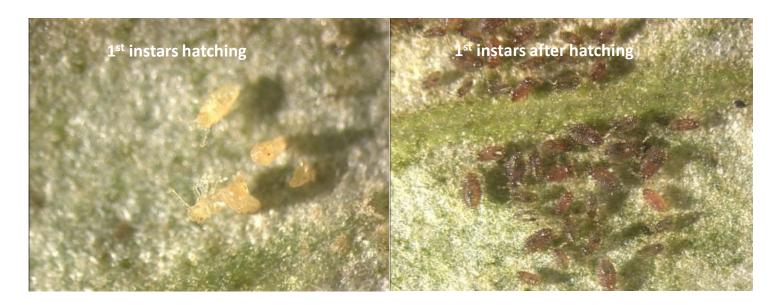
MODERATE PRIORITY

HIGH PRIORITY

MODERATE PRIORITY

WEEDS

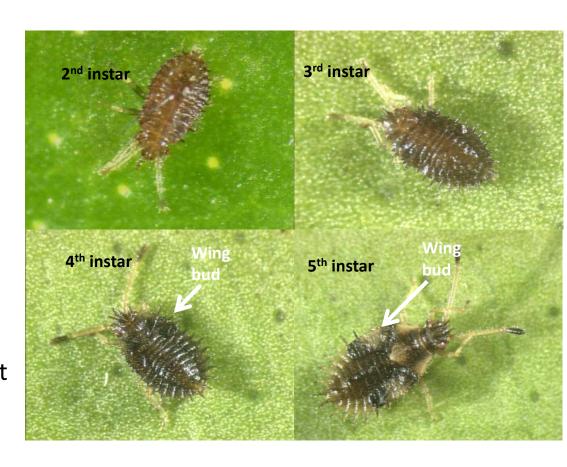
CHEMICALS REGISTERED OR PERMITTED FOR USE AGAINST OLIVE LACE BUG (Oct 25)


	ACTIVE CONSTITUENT	MoA GROUP	PRODUCT(S)	REGISTERED OR PERMIT	CONDITIONS OF USE	RISK: R1 critical R2 medium, R3 monitor
CURRENT OPTIONS	Acetamiprid + Pyriproxyfen	4A+7C (I)	TRIVOR®	PER89943 Until Sept 2027	Max 2 applications/ season, minimum 14 days apart.	R2
	Clothianidin	4A (I)	SAMURAI®	PER14897 Until Jan 2026	1 application/season. WHP 56 days.	R2
	Dimethoate	1B (I)	ROGOR®, others	PER13999 Until Jul 2026	Max 4 applications/season. 2 sprays, 7–14 days apart. Not for table olives. WHP 6 weeks.	R2
	Esfenvalerate	3A (I)	SUMI-ALPHA FLEX®, others	Registered	Max 4 applications/season to fruiting trees, ≥ 14 days apart. WHP 14 days.	
	Flupyradifurone	4D	SIVANTO PRIME®	Registered	Max 2 applications/season. Minimum 60 days apart. WHP 14 days.	
	Potassium soap		NATRASOAP®	PER14414 Until Jul 2028	Second spray 7-10 days later. WHP Nil.	
	Pyrethrins	3A (I)	PYGANIC®, others	PER81870 Until Jul 2029	Max 6 applications/season, min 14 days apart. WHP 1 day.	
POSSIBLE FUTURE	Isocycloseram	30	SIMODIS®		Not registered for Hemiptera	
OPTIONS	Sulfoxaflor	4C	TRANSFORM®		Registered for bugs in fruits and vegetables	

OLIVE LACE BUG Froggattia olivinia (Tingidae)

Native species

Occurs in all states. Major pest in NSW, North Vic, WA-Eggs laid in leaf tissue, undersides of leaves


5 nymphal instars

TIMING OF TREATMENT APPLICATIONS

Target nymphs (prior to reaching adulthood), esp. 1st generation NOTE: emergence is not synchronous

Importance of monitoring (especially previous locations of (particularly high) infestations and those locations/cultivars that previously shown early emergence)

MONITORING IS THE KEY

OLIVE LACE BUG DAMAGE

All motile stages have piercing and sucking mouthparts

They mostly feed on undersides of leaves, but adults are also found on upper leaf surface

Typical early-stage olive lace bug damage (lasts for years)

Trees severely damaged by olive lace bug several years previously

Adult lace bugs ready to overwinter

CHEMICALS REGISTERED OR PERMITTED FOR USE AGAINST BLACK SCALE (Oct 25)

TARGET PEST OR DISEASE	ACTIVE CONSTITUENT	MoA GROUP	PRODUCT(S)	REGISTERED OR PERMIT	CONDITIONS OF USE	RISK
CURRENT	Acetamiprid and	4A (I)	TRIVOR®	PER 89943	WHP 28 days.	R2
OPTIONS	Pyriproxyfen	7C (I)		Until Sept 2027		
	Emulsifiable Botanical Oil	9B (I)	ECO-OIL® MITICIDE/INSECTICIDE BOTANICAL OIL, POOP®	Registered	No WHP.	
	Fenoxycarb	7B (I)	INSEGAR®	Registered	Max 2 applications/season, min. 7 days apart. WHP 56 days.	
	Flupyradifurone	4D (I)	SIVANTO PRIME®	Registered	Max 2 applications/year, min 60 days apart. WHP 14 days.	
	Paraffinic oil, Petroleum spray oil	9B (I)	isoCLEAR HPO, TRUMP®, SACOA BIOPEST®	Registered	WHP 1 day.	
	Pyriproxyfen	7C (I)	ADMIRAL®, others	Registered	Max 2 applications/season. WHP 7 days.	
	Pyriproxyfen and Piperonyl Butoxide	7C (I)	PATRIARCH RMR®	Registered	Max 2 applications/season. WHP 7 days.	
FUTURE	Buprofezin	16	APPLAUD®		Scales in fruit crops	
POSSIBLE OPTIONS	Spirotetramat	23	MOVENTO®		Scales in fruit crops	
	Sulfoxaflor	4C	TRANSFORM®		Scales in fruit crops	

BLACK SCALE Saissetia oleae (Coccidae)

- Important and widespread insect pest
- 1-2? generations/year.

Overlapping, particularly in warmer climates

Adult female black scales on leaves near the mid-vein

Ants and black scale

LIFE CYCLE OF BLACK SCALE IS CRITICAL TO MANAGEMENT

Eggs (≤thousands per female)


1st instar crawlers

2nd instar settled scales

3rd instar immature females (H on back, flatter, paler)

Mature females (domed, dark brown/black)

Males rare, winged

TIMING OF APPLICATIONS

Target emerging crawlers and early established nymphs. NOTE: emergence is not synchronous

Importance of monitoring (especially previous locations where scale numbers high)

MONITORING IS THE KEY

CHEMICALS REGISTERED OR PERMITTED FOR USE AGAINST APPLE WEEVIL (Oct 25)

	ACTIVE CONSTITUENT	MoA GROUP	PRODUCT(S)	REGISTERED OR PERMIT	CONDITIONS OF USE	RISK
CURRENT OPTIONS	Alpha- cypermethrin	3A (I)	DOMINEX DUO INSECTICIDE®, SUMI-ALPHA FLEX®, others	PER14791 Until Nov 2026	Max 2 applications/season to trees of fruit bearing age. No WHP, but no grazing (Ground, butt treatments only).	
POSSIBLE FUTURE OPTIONS	Indoxacarb	22A	AVATAR®		Weevils in fruit and vegetable crops	R3
	Tetraniliprole	28	VAYEGO® ***		Weevils in fruit and nut crops	

^{***} Application submitted to APVMA for a label extension

APPLE WEEVIL Otiorhynchus cribricollis

Adults nocturnal, flightless.

Climb trees to chew leaves, with scalloped margins. Also feed on soft bark, growing tips and fruit stalks. Young trees may be killed and mature trees have reduced yield.

Images: Stewart Learmonth

Soil-dwelling larvae legless grubs with white bodies and brown heads. Feed on plant roots, **but there are no reports of adverse effects on olive trees**.

One generation per year. Adults emerge from ground in early summer. Activity falls in hot weather, adults resume feeding late summer.

TIMING OF APPLICATIONS

Target emerging females in early summer

MONITORING OF FEMALE EMERGENCE FROM THE GROUND IS THE KEY

	ACTIVE CONSTITUENT	MoA GROUP	PRODUCT(S)	REGISTERED OR PERMIT	CONDITIONS OF USE	RISK
CURRENT OPTIONS	Azoxystrobin	11 (F)	Various	Registered	Max 2 applications/season >21 days apart. WHP 21 days.	
	Copper (copper oxychloride, cupric hydroxide, cuprous oxide, tribasic copper sulphate)	M1 (F)	Various	Registered	WHP 1 day Also for other fruit rots Generally organically acceptable	
	Fluopuram & Tebuconazole	7+3 (F)	LUNAR EXPERIENCE®	Registered	Max 2-3 applications/season, retreatment 14-21 days. WHP 14 days	R3
	Mancozeb	M3 (F)	Various	PER88358 Until May 2028	Max 4 applications/season >14 days apart. WHP 14 days.	R2
	Metiram & Pyraclostrobin	M3+11 (F)	AERO®	PER14908 Until May 2029	Max 2 applications/season >21 days apart. WHP 21 days.	R2
FUTURE POSSIBLE OPTIONS	Bacillus amyloliquefaciens strain QST713	Biological	SERENADE PRIME®		Registered for anthracnose in tropical and sub-tropical fruit with inedible peel	
	Aureobasidium pullulans Strains	Biological	BOTECTOR®		Registered for anthracnose in berries	

DSM14940 & 14941

ANTHRACNOSE (Colletotrichum acutatum, C. gloeosporoides)

Latent infection

Primary infections from overwintering sclerotia (mummies) on flowers, young fruit, leaves.

Secondary infections (from lesions to other ripening

fruit)

Weather conducive to anthracnose (warm, humid, leaf wetness) promotes primary, secondary spread

TIMED APPLICATIONS ESP. EARLY IS THE KEY

Mummified fruit: source of infection

Secondary infection

CHEMICALS REGISTERED OR PERMITTED FOR USE AGAINST PEACOCK SPOT AND CERCOSPORA LEAF MOULD (Oct 25)

	ACTIVE CONSTITUENT	MoA GROUP	PRODUCT(S)	REGISTERED OR PERMIT	CONDITIONS OF USE	RISK
CURRENT OPTIONS	Copper (copper oxychloride, cupric hydroxide, cuprous oxide, tribasic copper sulphate)	M1 (F)	Various	Registered	WHP 1 day Also for other fruit rots Generally organically acceptable	
	Copper oxychloride + copper hydroxide	M1 (F)	AIRONE® WG Fungicide	Registered	WHP 1 day Also for other fruit rots	
	Mancozeb	M3 (F)	Various	PER88358 Until May 2028	Max 4 applications/season >14 days apart. WHP 14 days.	R2
FUTURE POSSIBLE OPTIONS	Bacillus amyloliquefaciens strain QST713	Biological	SERENADE OPTI®		Registered for leaf diseases in some fruit and vegetable crops. Activity on Peacock Spot unknown.	

PEACOCK SPOT Fusicladium oleaginum

Common in regions that experience wet and humid spring conditions.


leaf symptoms

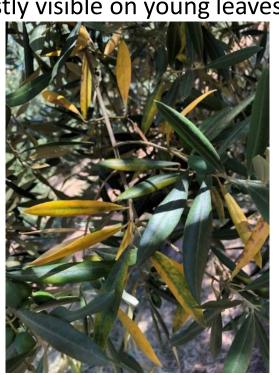
- Spots can develop a dark outline, concentric markings or a yellow halo
- Infected leaves yellow before dropping

fruit symptoms

• in moist weather conditions developing fruit can also be infected – although this isn't common

TIMING OF APPLICATIONS (especially late winter & spring) IS THE KEY

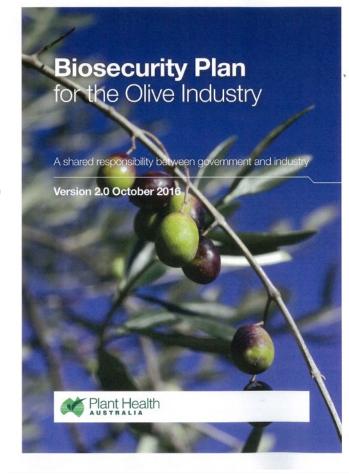
Cercospora LEAF MOULD *Pseudocercospora cladosporioides*


Common in Australian olive groves

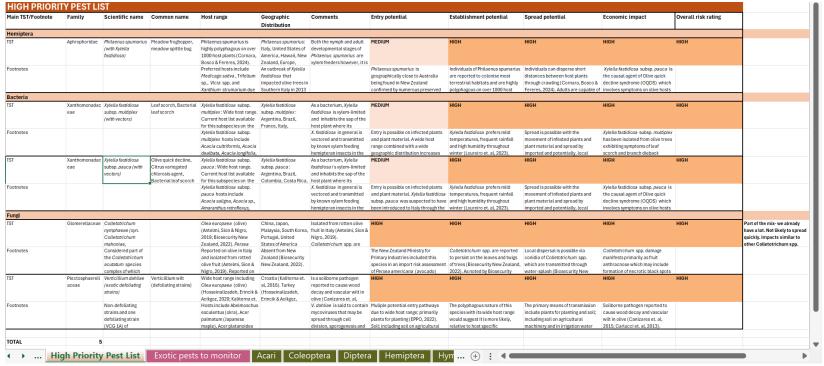
Slow degenerative disease often taking several years for trees to significantly decline

Lead-grey mould develops on the leaf under-surface – mostly visible on young leaves

Yellow infected leaves easily dislodged when touched



PROTECTING OUR GROVES: THE OLIVE INDUSTRY BIOSECURITY PROJECT


- Previous Biosecurity Plans (most recent-v.2.0, 2016).
- Recently-commenced project will develop Biosecurity Plan v3.0 enabling the Australian olive industry to:
- Identify the exotic pests which pose highest threat to olive growers.
- Develop mitigation activities to reduce biosecurity threat, including farm-level activities and surveillance and diagnostic activities.
- Improve current biosecurity capacity and capability at industry and grove level.

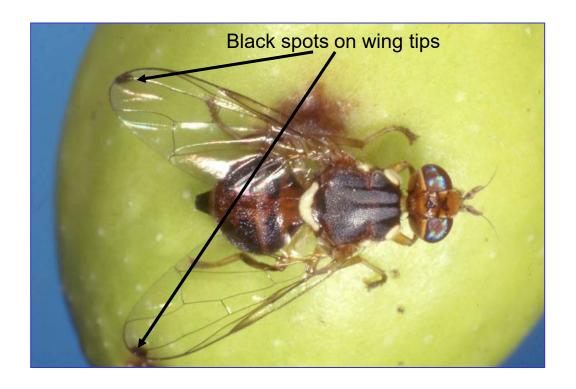
Funded by Hort Innovation using the olive research and development levy and funds from the Australian Government.

- Commissioned organisation for this project is Plant Health Australia (PHA)
 Involves collaboration with industry and national and state government agencies
- The Australian Olive Association is a member of PHA and represents biosecurity interests of olive industry

Olive Technical Review Panel (AOA, other industry/government representatives), met 24
 September 2025 to review the Draft Threat Summary Table.

HIGH PRIORITY EXOTIC PESTS (Reviewed and agreed)

SCENTIFIC NAME	COMMON NAME(S)	CLASSIFICATION
Bactrocera oleae	Olive fruit fly/Olive fly	Insect-Diptera
Philaenus spumarius	Meadow froghopper/ Meadow spittle bug	Insect-Hemiptera
Xylella fastidiosa subsp. multiplex (with vectors)	Leaf scorch/Bacterial leaf scorch	Bacteria
Xylella fastidiosa subsp. pauca (with vectors)	Olive quick decline/Citrus variegated chlorosis agent/Bacterial leaf scorch	Bacteria
Verticillium dahlia (exotic strains)	Verticillium wilt	Fungi


EXOTIC PESTS TO MONITOR (Reviewed and agreed)

Reduced likelihood of entering Australia due to limited incursion pathways but if introduced, would have a significant economic impact on the Australian olive industry.

SCENTIFIC NAME	COMMON NAME(S)	CLASSIFICATION
Homalodisca vitripennis (with Xylella fastidiosa)	Glassy winged sharpshooter	Insect-Hemiptera
Phloeotribus scarabaeoides (syn. Phloeotribus oleae)	Olive bark beetle	Insect-Coleoptera
Prays oleae	Olive moth/Olive moth kernel borer	Insect-Lepidoptera
Rhynchites cribripennis (syn. Caenorhinus cribripennis, Coenorrhinus cribripennis)	Olive weevil	Insect-Coleoptera
Xylella fastidiosa subsp. multiplex (without vectors)	Leaf scorch/Bacterial leaf scorch	Bacteria
Xylella fastidiosa subsp. pauca (without vectors)	Olive quick decline/Citrus variegated chlorosis agent/Bacterial leaf scorch	Bacteria

OLIVE FLY Bactrocera oleae

- widely distributed in the Mediterranean basin, northern and southern Africa, Western Asia, India, Pakistan. Also present in California, Mexico.
- the most important and destructive pest of olives, and difficult to control
- will attack green fruit (unlike Queensland fruit fly or Medfly)
 Numerous generations (up to 3 or even more) are possible
- pupation normally occurs in the fruit (unlike Queensland fruit fly or Medfly that always pupate in soil), only pupating in soil in the final generation when fruit are on the ground (for overwintering)

Adult female olive fly ovipositing on green olive Note: black spots on wing tips (distinguishes it from Queensland fruit fly)

Images of olive fly gratefully received from Dr A Loni, University of Pisa

Olive fly larval tunnelling can be extensive

2nd instar olive fly larva (maggot) tunnelling into fruit Exit wounds in fruit when adult olive flies emerge

3rd instar olive fly larva with pupation chamber (marked)

Note: immature stages can be identified by molecular (DNA) methods

OLIVE MOTH, OLIVE KERNEL BORER Prays oleae

- caterpillars damage flowers, fruit and leaves
- present in the Mediterranean, Northern Africa, some other European countries but not central Asia or North or South America
- Host range is limited to olives and olive family

 Adult moths small (6 mm long, 13 mm wingspan), silvery grey, with long antennae Larvae can grow to 8 mm with colour light brown to green. The pupa is protected by loose silk webbing.

The 1st of 3 generations of caterpillars (anthophagous) feed on flowers. Frass (faecal pellets and webbing) may be present.

Caterpillars of the 2nd generation (carpophagous) are the most harmful, burrowing into developing fruit and feeding near the kernel, causing severe fruit damage and fruit drop.

Caterpillars of the 3rd generation (phyllophagous) feed on leaves, including causing leaf mining and shoot bud damage.

OLIVE TREE BARK BEETLE *Phloeotribus scarabaeoides* (syn. *Phloeotribus oleae*)

Mediterranean region

Damages and kills younger branches via feeding activity which produces galleries, reducing number of flowers and fruit

OLIVE WEEVIL Rhynchites cribripennis

Mediterranean region

Adults drill holes and bore into fruit, causing fruit drop.

Females lay eggs in olive fruit and larvae consume the fruit kernel.

Can also feed on young shoots and leaves.

Xylella fastidiosa

3 subspecies:

X.f. pauca (Olive tree decline)

X.f. multiplex (Leaf scorch-possible olive damage)

X.f. fastidiosa (Olive not host)

Very wide host range (although X.f. pauca more restricted 59 host species)

Transmitted by xylem-feeding insects in families Aphrophoridae, Cercopidae and Cicadellidae (plant hoppers, sharpshooters, spittlebugs)

When vector feeds on infected plant *X. fastidiosa* colonizes the vector by forming a biofilm on its mouth-parts

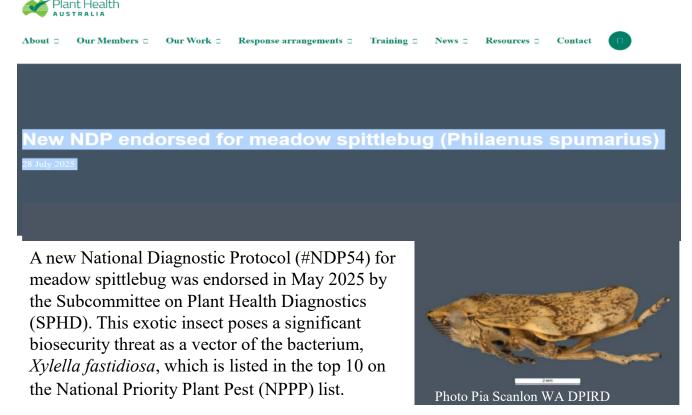
X. fastidiosa also forms biofilms in plant xylem vessels, obstructing vascular flow

X. fastidiosa may be asymptomatic in infected plants

Olive Tree Decline

- In Europe Xylella fastidiosa subsp. pauca first recorded in 2013 Apulia Italy, causing Olive Tree Decline
- In 10 years, it had destroyed millions of olive trees over 8,000 square km in Southern Italy
- Over past decade, it has also advanced
 250 km north, to Bari

Image: Amanda Bailey



MAJOR VECTOR OF *X. fastidiosa* in USA:

Glassy sharpshooter *Homalodisca vitripennis* (Cicadellidae) xylem feeder. This species is a high quarantine risk pest for Australia (many crops)

Australia, like Italy and most other countries, has many native species of xylem-feeding cicadellids and spittle bugs.

Meadow spittlebug is also a known vector for Xylella

https://www.planthealthaustralia.com.au/new-national-diagnostic-protocol-endorsed-for-meadow-spittlebug-philaenus-spumarius/

This species is present in New Zealand

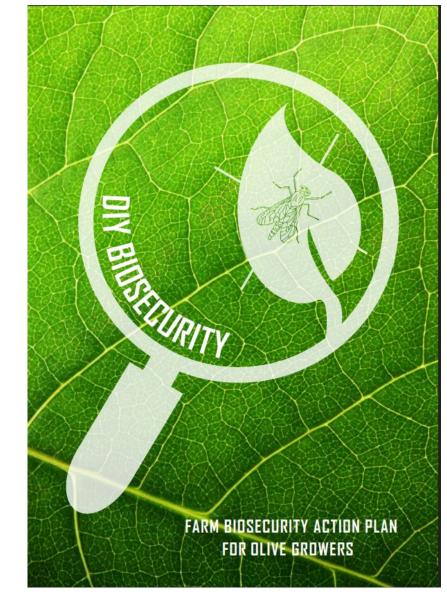
National Preparedness Workshop- Mike Thompsett, me (but unfortunately, not Michael Southan) 18 September 2025 Mildura, assessing the processes that should take place following confirmation of *Xylella fastidiosa* in the event of an incursion, with national/state government and other horticultural industry representatives, including Hort Innovation.

VERTICILLIUM WILT (Verticillium dahliae (defoliating strain)

- soil-borne fungal pathogen that infects roots and travels up the xylem into the trunk and lower branches causing them to wilt
- widespread around the world and has wide host range affecting crops such as cotton, potatoes, eggplants stone fruit trees – and olives in Australia
- Several strains of this fungus has been distinguished as the 'defoliating strain' (DS) on cotton in USA. It causes wilt and death of olive trees in California and parts of Europe.
- Some defoliating strains have not been recorded in Australia and are therefore a biosecurity threat.

Defoliating strain of *V. dahliae* causing olive tree wilt in California showing individual branches with symptoms

L Burgess


Defoliating strain of *V. dahliae* causing olive tree wilt and death California

L. Burgess

BIOSECURITY ON YOUR OLIVE GROVE

 It is strongly recommended that you develop and actively follow a biosecurity management plan for your property(ies)

You can access the document FARM BIOSECURITY ACTION PLAN FOR OLIVE GROWERS, which includes a Grove Biosecurity Checklist from AOA's website https://australianolives.com.au/wp-content/uploads/2018/06/Biosecurity-Olive Reduced-File.pdf

FINAL WORDS

There will be engagement with the Industry on development of the Biosecurity Surveillance, Readiness and Action Plan

FINAL WORDS

There will be engagement with the Industry on development of the Biosecurity Surveillance, Readiness and Action Plan

If you suspect a new pest, call the Exotic Plant Pest Hotline on 1800 084 881

FINAL WORDS

There will be engagement with the Industry on development of the Biosecurity Surveillance, Readiness and Action Plan

If you suspect a new pest, call the Exotic Plant Pest Hotline on 1800 084 881

And there is access to IPDM resources

https://australianolives.com.au/resources/integrated-pest-disease-management/ipdm-project-outputs